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Abstract

In this paper, we present a new second order primitive preconditioner technique for solving all speed multi-phase

flow problems. With this technique, one can compute both compressible and incompressible flows with Mach-uniform

accuracy and efficiency (i.e., accuracy and efficiency of the method are independent of Mach number). The new prim-

itive preconditioner can handle both strong and weak shocks, providing highly resolved shock solutions together with

correct shock speeds. In addition, the new technique performs very well at the zero Mach limit. In the case of multi-

phase flow, the new primitive preconditioner technique enables one to accurately treat phase boundaries in which there

is a large impedance mismatch. The present method is tested on a variety of problems from low (low speed) to high

Mach number (high speed) flows including multi-phase flow tests, i.e., computing the growth and collapse of adiabatic

bubbles for study of underwater explosions. The numerical results show that the newly proposed method supersedes

existing up-to-date numerical techniques in its category.

� 2005 Elsevier Inc. All rights reserved.
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1. Introduction

We are interested in solving all speed flow phenomena including multi-material flow systems. We will say

that a flow is weakly compressible if the Mach number satisfies 0 < M 6 0.2, and compressible if M > 0.2.
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There are many applications in fluid dynamics where compressible and weakly compressible flow occur

simultaneously (all speed flow phenomena) [52]. A possible short list of such applications could be given

as (1) solving flow problems in the inlet of internal combustion engines; the flow is weakly compressible

in the bulk of the inlet channel and compressible near the valve, (2) predicting flow fields around aircrafts

during take-offs and landings; the flow shows compressible regimes around the wings and weakly compress-
ible regimes around the rest of the body, and (3) (the topic of our current research) solving adiabatic bubble

growth and collapse to simulate underwater explosions; the numerical treatment in water requires a com-

pressible treatment around the shock front, and water behaves as a weakly compressible fluid elsewhere.

There exist a variety of good numerical techniques designed specifically for compressible or specifically

for incompressible flows. The difficulty arises when we use such numerical techniques in the case when both

compressible and weakly compressible flows exist at the same time. For instance, if we apply a standard

density-based compressible formulation to solve weakly compressible flows, we must expect loss of accu-

racy and efficiency due to weak coupling between pressure and density [18,51,60]. Such compressible meth-
ods are generally based on explicit time integration methods that impose severe CFL (Courant Friedreichs

Lewy) restrictions for stability. Applying these kinds of schemes to low Mach number flows without special

treatment will lead to impractical computations (due to the large sound speed), especially for three-

dimensional problems. The situation is even worse when we tackle multi-phase flow problems. Unphysical

pressure oscillations and other computational inaccuracies are often reported at or near material interfaces

[22,33]. This typically occurs with large density ratios across a material interface (e.g., 1:1000 for air–water),

or with a ‘‘stiff’’ equation of state on one side of the interface. One way to overcome these difficulties is to

introduce a unified numerical procedure for computing both compressible and incompressible flows with
Mach-uniform accuracy and efficiency (i.e., the accuracy and efficiency of the scheme are independent of

the Mach numbers from subsonic to supersonic values [46]). The procedure must include an effective

way of eliminating unphysical oscillations associated with multi-material discontinuities.

There are two approaches for developing a unified numerical technique for all speed flows. The first ap-

proach extends the functionality of explicit methods in order to effectively handle low Mach number flows.

The second approach extends the functionality of semi-implicit (e.g., projection methods or all-speed meth-

ods) methods in order to effectively handle flows with strong shocks.

Of the unified methods that fall under the first approach, the most popular methods are the so-called
explicit preconditioning techniques [42,43,50,25]. These techniques involve multiplying the time derivative

part of the system of the compressible equations by a suitable preconditioning matrix, and then solving the

resulting equations. However, there are drawbacks. First of all, since only the time derivatives are modified,

temporal accuracy is lost. And due to their explicit nature, they are still subject to severe CFL restrictions.

Furthermore, the preconditioning matrix may become singular in the limit M fl 0, and this impairs the

robustness of the computation [34]. An alternative unified method that attempts to extend the functionality

of an explicit approach to low-Mach number flows is based on asymptotic expansions of the governing

equations in terms of Mach number [14,23,24]. Unfortunately, this methodology is applicable only for
small Mach numbers (e.g., M 6 0.2).

As an alternative to unified methods which extend functionality of high Mach number schemes to low-

Mach number regimes, one can extend the functionality of a low-Mach number, semi-implicit, scheme to be

able to handle a high Mach number flow. One of the earliest examples in this class is Harlow and Amsden

[16]. In their original work known as ICE (Implicit Continuous Eulerian), they pointed out that one has to

separate out the incompressible part of the flow and treat it implicitly. Implicit treatment relaxes the severe

CFL restrictions, especially in low Mach regions. Detailed information about ICE methods can be found in

[16,8,18] and the references therein. ICE methods perform well for flows involving moderate shocks, but
ICE is problematic when one wants to compute strong shocks. This is because their nonconservative

method leads to large conservation errors. Yet another nonconservative approach in this class is Colella

and Pao [11]. This method is based on Hodge decomposition of flow variables [10]. In other words, they
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decompose the velocity field into two orthogonal components; one being the divergence free part and the

other orthogonal component being the curl-free part. Such a treatment enables a natural extension from

incompressible flow, in which there is no curl-free component, to compressible flow. Although they ob-

tained reasonably accurate results for low Mach number flows, they did not report results for high Mach

numbers. Recently, a conservative approach is taken by van der Heul et al. [45,46] generalizing the MAC
(Marker-and-Cell) method of Harlow and Welch [17]. This scheme is based on pressure correction on a

staggered grid. The main theme in [45,46] is essentially to improve the shock capturing ability of earlier

schemes [6,53,54]. In [6,53,54], they discretized the continuity and momentum equations in conservation

form, but they used a nonconservative discretization for the energy equation. As a result, such nonconser-

vative representation caused inaccurate calculation of the shock speed. So in [45,46], they extended their

nonconservative schemes [6,53,54] to a fully conservative one. Although they achieved some improvements,

their method still suffers from unphysical oscillations near the shocks.

All of the methods mentioned above are designed to solve single-fluid flow problems. When we have a
multi-fluid system, we need not only a Mach-uniform scheme but also an effective way of eliminating

unphysical oscillations near multi-material discontinuities. In addition, we need a good interface captur-

ing technique for accurate representation of surfaces between different materials (i.e., gas with a liquid or

solid). According to Lax theorem [27], the best flow description for the hyperbolic conservation laws is

provided through the conservative formulation of the governing equations. Karni [22] noted that this

may not be true in the case when we solve multi-phase flow problems. In fact, she showed that conser-

vative discretization gives rise to unphysical pressure oscillations near material interfaces (contact discon-

tinuities). Alternatively, she introduced non-conservative (primitive) models to capture oscillation-free
contact discontinuities [22]. Later, Abgrall et al. [1,2] improved Karni�s work by introducing a quasi-

conservative approach. Their work is based on the GFM (Ghost Fluid Method) of Fedkiw et al.

[12,13], i.e., they solve single-fluid problem for each fluid by defining ghost points on each side, and then

they reconstruct the material interface by solving the level set equation. There are several other multi-

material formulations [19,47,48], but none of them including Karni�s and Abgrall�s methods are all speed.

Now we focus our attention on all speed multi-phase flow solvers with good shock capturing ability and

good multi-material discontinuity representations. Yabe et al. [33,57–61] have put substantial effort in

this direction. They utilize a CIP (Cubic Interpolated Polynomial [41,58]) based time splitting predic-
tor-corrector technique. In other words, they separate the governing equations into advection and

non-advection parts by the time splitting method [9], then they solve the advection terms including the

interface advection by the CIP method, finally they employ a pressure-based predictor-corrector method

to update the flow variables. Their early works are based on a primitive formulation of both the fluid and

interface equations [57,61]. These early methods [57,61] worked reasonably well for solving low speed

flows and gave fairly good multi-material solutions, but they failed to calculate correct shock speeds

due to their purely primitive formulations. More recently, they added artificial viscosity [33,60] and also

adopted partially or fully conservative procedures [59,56] to calculate correct shock solutions, but they
still have over and undershoots (Gibbs phenomenon) at shocks and contact discontinuities. In addition,

the fully conservative approach [56] is untested for low speed or multi-phase flows, and more importantly

these methods are only first order accurate in time.

A review of the literature cited above clearly indicates that an efficient and accurate method including

good shock and multi-material discontinuity representations for all speed multi-phase flows has not been

developed yet. We know that fully conservative methods create problems at contact discontinuities [22],

and primitive (non-conservative) methods fail to calculate correct shock speeds [57,61]. On the other

hand, conservative techniques have the advantage of capturing correct shock speeds and primitive tech-
niques are good at representing accurate multi-material discontinuities. Thus, we want to use the advan-

tages of both representations and introduce a new unified numerical procedure that will handle flows at

any speed and provide accurate interface representations in the case of multi-phase flow phenomena. Our
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method consists of two steps. At the first step we solve the governing equations by one of our favorite

explicit solvers, and at the second step (preconditioning step) we correct the explicitly calculated fluid

variables by an implicit correction algorithm. The explicit step provides sharp shock capturing together

with correct shock speeds, and the implicit correction step (the preconditioning step) enables us to use

relatively large time steps, compared to typical explicit CFL restrictions, together with better material
interface representations. The idea behind our method is similar to [37] in that we add and subtract

the compressibility terms in an implicit fashion in order to stabilize the solution for pressure. We note

that the explicit step, as a part of multi-material flows, can be performed separately for each material

without regard to material boundary conditions, i.e., the ghost fluid treatments [12,13,3,4,32] that respect

material jump conditions are unnecessary for the explicit part. Instead, the pressure and velocity conti-

nuity conditions are enforced during the preconditioning step.

The outline of the present paper is as follows. In Section 2, we present the mathematical formulation of

the problem. In Section 3, we give the general structure of the preconditioner including two examples of
explicit methods which are to be preconditioned. In Section 4, in order to validate the proposed method,

numerical simulations are performed on a variety of problems from low (low speed) to high Mach number

(high speed) flows including multi-phase flow tests, i.e., computing the growth and collapse of adiabatic

bubbles for study of underwater explosions, and computing oscillating water column problem in a 1-D

tube. In Section 5, some concluding remarks are provided.
2. The mathematical formulation

We will present our numerical procedure starting with single-fluid flow models, then in the later section

we will extend the numerical method to multi-phase flow problems. As a single-fluid flow model, we con-

sider the one dimensional time dependent inviscid Euler equations for representing the dynamics of one

dimensional inviscid compressible flows. The one dimensional Euler equations in conservation form can

be written as the non-linear hyperbolic system of partial differential equations, i.e.,
oU
ot

þ oF ðUÞ
ox

¼ 0; ð1Þ
where
U ¼
q

m

E

0
B@

1
CA
and
F ðUÞ ¼
m

umþ p

uE þ up

0
B@

1
CA;
where q, u, p, and E denote density, velocity, pressure, and the total energy per unit volume, m denotes

momentum m = qu, and E ¼ qeþ 1
2
qu2 with e denoting the internal energy per unit mass. For perfect gases,

the thermodynamical relation (the equation of state) is
e ¼ p
qðc� 1Þ ; ð2Þ
where c is the specific heat ratio.
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3. The second order primitive preconditioner

We give the general structure of our second order primitive preconditioner algorithm which is based on

the implicit correction of an explicit building block of the Euler equations in general form.

Algorithm (Basic structure of the algorithm).

Define pn+1,0 = pn, qn+1,0 = qn, and un+1,0 = un,

Given pn+1, k� 1, qn+1, k� 1, and un+1, k� 1,

For k = 1, . . .,M

Step (1) Explicit building block

Calculate pexp,k, uexp,k, qexp,k, and eexp,k by an explicit solver (solving (1) either in conservation form

or primitive form)

Step (2) Implicit correction step

Update pn+1,k, un+1,k, qn+1,k, en+1,k, mn+1,k, and En+1,k by the second order primitive

preconditioner.

end

In order to execute Step (2), we have (in multi-dimensional notation)
pnþ1;k � pexp;k

Dt
¼ �gðcnþ1;k�1Þ2qnþ1;k�1½r � unþ1;k �r � unþ1;k�1�; ð3Þ

unþ1;k � uexp;k

Dt
¼ �g

1

qnþ1;k�1
½rpnþ1;k �rpnþ1;k�1�; ð4Þ
where c is the speed of sound
c2 ¼ dp
dq

; ð5Þ
superscript k represents the iteration number, (n + 1,k) and (n + 1,k � 1) denote the newly computed and
current values of the related field variables, (exp,k) represents the computed explicit values for which we

will give two different examples, one conservative and one non-conservative (in Sections 3.1 and 3.2),

and g is a constant, either g = 0 or g = 1 to automatically switch the scheme to an explicit or implicit

one. If we take the divergence of the velocity correction equation (4) and replace $ Æ un+1,k in the pressure

correction equation (3), we obtain the following elliptic system involving the new pressure field,
g2Dt2r � rpnþ1;k

qnþ1;k�1

� �
� 1

ðcnþ1;k�1Þ2qnþ1;k�1
pnþ1;k ¼ gDt½r � uexp;k �r � unþ1;k�1� � 1

ðcnþ1;k�1Þ2qnþ1;k�1
pexp;k

þ g2Dt2r � rpnþ1;k�1

qnþ1;k�1

� �
. ð6Þ
After solving this elliptic system, we immediately update the velocity field. Using the newly computed

pressure and velocity fields, we then compute the other primitive variables by using the following

approximations,
qnþ1;k � qexp;k

Dt
¼ �gqnþ1;k�1½r � unþ1;k �r � unþ1;k�1�; ð7Þ

enþ1;k � eexp;k

Dt
¼ �g

pnþ1;k�1

qnþ1;k�1
½r � unþ1;k �r � unþ1;k�1�; ð8Þ
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and finally we update the momentum and total energy by using
mnþ1;k ¼ qnþ1;kunþ1;k; ð9Þ
Enþ1;k ¼ qnþ1;kenþ1;k þ 1

2
qnþ1;kjunþ1;kj2. ð10Þ
3.1. Example of a conservative explicit building block

In this section, we describe how to obtain the explicit terms (the (exp,k)th values) conservatively for the

second order primitive preconditioner algorithm when solving all speed flows with shock capturing. The

conservative explicit solver uses local Lax Friedrich numerical fluxes together with a second order ENO

extrapolation method in order to obtain shock solutions with high resolution. Our method is in the same

spirit as the second order ENO central schemes developed by [31] in that we do not use field-by-field decom-

position in order to extrapolate the characteristic variables. We remark that our proposed preconditioner is

flexible in that we can use as an alternative explicit building block, the less diffusive ENO/WENO schemes

[35,36,44,20,30] or third order central schemes [29]. We consider the one dimensional Euler equations (1)
and use the following conservative discretization,
U ðexp;kÞ
i � U ðnþ1;0Þ

i

Dt
¼ �

F
LLF;

ðnþ1;k�1Þþðnþ1;0Þ
2

iþ1
2

� F
LLF;

ðnþ1;k�1Þþðnþ1;0Þ
2

i�1
2

Dx
; ð11Þ
where superscript ðnþ1;k�1Þþðnþ1;0Þ
2

represents the simple average of the (k � 1)th iterated and the initial values
of related flow variables, and F LLF

iþ1
2

denotes the local Lax Friedrich numerical flux function, i.e.,
F
LLF;

ðnþ1;k�1Þþðnþ1;0Þ
2

iþ1
2

¼ F LLF U
R;

ðnþ1;k�1Þþðnþ1;0Þ
2

iþ1
2

;U
L;

ðnþ1;k�1Þþðnþ1;0Þ
2

iþ1
2

� �

¼ 1

2
F U

R;
ðnþ1;k�1Þþðnþ1;0Þ

2

iþ1
2

� �
þ F U

L;
ðnþ1;k�1Þþðnþ1;0Þ

2

iþ1
2

� �� �
� 1

2
aiþ1

2
U

R;
ðnþ1;k�1Þþðnþ1;0Þ

2

iþ1
2

�U
L;

ðnþ1;k�1Þþðnþ1;0Þ
2

iþ1
2

� �
.

ð12Þ
Here � �

aiþ1

2
¼ max

p
kpðL;RÞ
iþ1

2

�� ��; p ¼ 1; 2; 3; ð13Þ
with kpðL;RÞ
iþ1

2

�s denoting the left or right values of the eigenvalues of the system, and UL
iþ1

2
;UR

iþ1
2
represent

the left and right values of the state variables, respectively. UL
iþ1

2
and UR

iþ1
2
are defined as
UL
iþ1

2
¼ Ui þ

Dx
2
Ux;i; ð14Þ

UR
iþ1

2
¼ Uiþ1 �

Dx
2
Ux;iþ1; ð15Þ
where
Ux;i ¼
Uiþ1�Ui

Dx if jUiþ1 � Uij < jUi � Ui�1j;
Ui�Ui�1

Dx otherwise.

(
ð16Þ
3.2. Example of a non-conservative explicit building block

In this section, we give an alternative way of obtaining the explicit terms for the second order primitive
preconditioner technique when we solve zero Mach limit flows which are dominated by acoustic waves or
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flows that contains no shock discontinuity. The main idea is to give up the conservative form of the Euler

equations in the explicit step whenever there is no shock discontinuity in the flow. Instead, we solve the

primitive Euler equations in the explicit step, and then we apply the implicit correction algorithm. The

primitive Euler equations are
qt þ uqx þ qux ¼ 0; ð17Þ

ut þ uux þ
1

q
px ¼ 0; ð18Þ

pt þ upx þ c2qux ¼ 0. ð19Þ
We discretize the primitive Euler equations as
qexp;k
i � qnþ1;0

i

Dt
¼ �u

ðnþ1;k�1Þþðnþ1;0Þ
2

i

hqi
ðnþ1;k�1Þþðnþ1;0Þ

2

iþ1
2

� hqi
ðnþ1;k�1Þþðnþ1;0Þ

2

i�1
2

Dx
� q

ðnþ1;k�1Þþðnþ1;0Þ
2

i

u
ðnþ1;k�1Þþðnþ1;0Þ

2

iþ1
2

� u
ðnþ1;k�1Þþðnþ1;0Þ

2

i�1
2

Dx
;

ð20Þ

uexp;ki � unþ1;0
i

Dt
¼ �u

ðnþ1;k�1Þþðnþ1;0Þ
2

i

hui
ðnþ1;k�1Þþðnþ1;0Þ

2

iþ1
2

� hui
ðnþ1;k�1Þþðnþ1;0Þ

2

i�1
2

Dx
� 1

q
ðnþ1;k�1Þþðnþ1;0Þ

2
i

p
ðnþ1;k�1Þþðnþ1;0Þ

2

iþ1 � p
ðnþ1;k�1Þþðnþ1;0Þ

2

i�1

2Dx

ð21Þ
and
pexp;ki � pnþ1;0
i

Dt
¼�u

ðnþ1;k�1Þþðnþ1;0Þ
2

i

hpi
ðnþ1;k�1Þþðnþ1;0Þ

2

iþ1
2

� hpi
ðnþ1;k�1Þþðnþ1;0Þ

2

i�1
2

Dx
� c2i q

ðnþ1;k�1Þþðnþ1;0Þ
2

i

u
ðnþ1;k�1Þþðnþ1;0Þ

2

iþ1
2

� u
ðnþ1;k�1Þþðnþ1;0Þ

2

i�1
2

Dx
.

ð22Þ

Here
u
ðnþ1;k�1Þþðnþ1;0Þ

2

iþ1
2

¼ u
ðnþ1;k�1Þþðnþ1;0Þ

2

iþ1 þ u
ðnþ1;k�1Þþðnþ1;0Þ

2
i

2
ð23Þ
and
hV iiþ1
2
¼

V i þ Dx
2
V x;i if uiþ1

2
> 0;

V iþ1 � Dx
2
V x;iþ1 if uiþ1

2
< 0;

(
ð24Þ
where V iþ1
2
denotes one of the primitive variables, i.e., q, u, or p and Vx,i is defined in the same way as (16).

This procedure relaxes the CFL condition significantly, i.e., it allows us to use time steps that are fifteen

times larger than the typical explicit CFL condition. We remark that it is critical that in order for one to

take such large time steps, determined by the condition, jujmaxDt < Dx, the ux terms in the primitive Euler

equations must be discretized by central differencing. We also remark that Yabe�s CIP scheme [58,61] is

equivalent to our preconditioning scheme except that the temporal accuracy of our scheme is second order.
4. Numerical results

The numerical examples are presented in two different subsections. The first part is dedicated to single-

fluid flow problems ranging from low to high Mach numbers. In the second part, we provide numerical

results of all speed multi-phase flow computations. For calculations in Section 4.1.1 through Section
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4.1.7 we used M = 3 (the number of iterations), and for all other calculations we used M = 2. We used g = 1

for all computations in this paper.
4.1. Application of the second order primitive preconditioner technique to single-fluid flow problems

For the single-fluid flow case, we solve similar test problems as in [56,46] in order to explore the resolu-

tion gained by our proposed preconditioner.

4.1.1. Sod�s shock tube problem

The shock tube problem considers a long, thin, cylindrical tube containing a gas separated by a thin

membrane. The gas is assumed to be at rest on both sides of the membrane, but it has different constant

pressures and densities on each side. At time t = 0, the membrane is ruptured, and the problem is to deter-

mine the ensuing motion of the gas. This problem is first studied by Riemann, and known as the Riemann
problem. The solution to this problem consists of a shock wave moving into the low pressure region, a rar-

efaction wave that expands into the high pressure region, and a contact discontinuity which represents the

interface.

The shock tube problem of Sod [38] considers the Riemann problem with the following initial data on

the interval 0 6 x 6 1,
ðqðx; 0Þ; uðx; 0Þ; pðx; 0ÞÞ ¼
ð1; 0; 1Þ if x 6 0.5;

ð0.125; 0; 0.1Þ if x > 0.5.

�
ð25Þ
When producing computational results for this test problem, we used 400 grid cells and the CFL

(jujmaxDt < CFLDx) number 0.3. And we used the conservative explicit building block given in Section

3.1. Our numerical results indicate higher resolved solutions for a given time step and given mesh size

than the numerical results reported in [56,46]. Our results, shown in Fig. 1, have no spurious oscillations

at any shock or contact discontinuities. A conservation study is done for the mass and total energy with
different mesh resolutions. Table 1 shows that the conservation errors are within acceptable ranges. Table

1 also shows that the conservation property of our method improves when more iterations are

performed.

4.1.2. Lax�s shock tube problem

We present the calculations for the Riemann problem,
ðqðx; 0Þ; uðx; 0Þ; pðx; 0ÞÞ ¼
ð0.445; 0.698; 3.528Þ if x 6 0.5;

ð0.5; 0; 0.571Þ if x > 0.5;

�
ð26Þ
used by Lax in [28]. The computational domain is taken to be [0,1]. The grid resolution is 400 cells and the

time stepping condition is CFL = 0.3 (jujmaxDt < CFLDx). The conservative explicit building block (Section

3.1) is used in here. For this problem, again as in the previous test case, our results indicate higher resolu-

tion than [46] and comparable resolution as [56] for a given mesh size and time step. Fig. 2 illustrates well
resolved shock and contact solutions.
4.1.3. Strong shock tube problem

Here, we present a strong shock tube problem with the following initial condition,
ðqðx; 0Þ; uðx; 0Þ; pðx; 0ÞÞ ¼ ð1; 0; 1010Þ if x 6 0.5;

ð0.125; 0; 0.1Þ if x > 0.5.

(
ð27Þ



Fig. 1. Numerical results of the Sod�s shock tube problem at t = 0.15. Solid lines represent the reference solutions and dashed lines

represent the results of the all speed primitive preconditioner.

Table 1

Error analysis for the Sod�s shock tube problem based on three levels of grid refinement

k = 2 iterations

Number of mesh points 100 200 400

Error in total mass 5.99 · 10�4 3.54 · 10�4 2.30 · 10�4

Error in total energy 2.47 · 10�3 1.75 · 10�3 1.38 · 10�3

k = 5 iterations

Number of mesh points 100 200 400

Error in total mass 2.85 · 10�5 2.46 · 10�5 2.42 · 10�5

Error in total energy 1.99 · 10�4 1.88 · 10�4 1.87 · 10�4
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The computational domain is taken as [0,1] interval. For this problem, we use the conservative ex-

plicit building block (Section 3.1). As noted in [56], this initial condition creates a supersonic shock

associated with extreme jumps in velocity and pressure. It is well known that purely non-conservative

schemes fail to compute strong shocks due to their intrinsic inability to calculate correct shock speeds.
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Fig. 2. Numerical results of the Lax�s shock tube problem at t = 0.12. Solid lines represent the reference solutions and dashed lines

represent the results of the all speed primitive preconditioner.
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This is also discussed in [56]. Xiao [56] computed correct shocks for this problem, yet there are still

density overshoots in his results. Fig. 3 shows the numerical results at t = 2.5 · 10�6. We used 400

grid cells during the computation while keeping the CFL (jujmaxDt < CFLDx) at 0.3 as in [56]. As

can be seen from Fig. 3, we have no overshoots at any place while obtaining correct shock

calculations.

4.1.4. Mach 3 shock test

The Mach 3 shock tube experiment uses the following initial conditions,
ðqðx; 0Þ; uðx; 0Þ; pðx; 0ÞÞ ¼
ð3.857; 0.92; 10.333Þ if x 6 0.5;

ð1; 3.55; 1Þ if x > 0.5.

�
ð28Þ
Here, we use the conservative explicit building block (Section 3.1) with 400 grid cells and the CFL
(jujmaxDt < CFLDx) number 0.5 on the domain of [0,1] to produce the numerical results. Fig. 4 indicates

that our numerical results fairly compare to [56].
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4.1.5. High mach flow test

The High Mach number shock tube problem uses the following initial data on the interval 0 6 x 6 1,
ðqðx; 0Þ; uðx; 0Þ; pðx; 0ÞÞ ¼
ð10; 2000; 500Þ if x 6 0.5;

ð20; 0; 500Þ if x > 0.5.

�
ð29Þ
The number of grid cells are 400 and the CFL (jujmaxDt < CFLDx) number is 0.4 for this problem. The

conservative explicit building block (Section 3.1) is used here. Fig. 5 demonstrates well resolved shocks with

correct shock locations and less smeared contact discontinuities than [56]. Here, the Mach number can

reach 240. This problem illustrates the robustness and stability of our method, even in the case of extremely

high Mach number (high speed) flows.

4.1.6. Interaction of blast waves

In this subsection, we present the numerical results for the problem of two interacting blast waves. This

problem, introduced by Woodward and Colella [55], involves multiple interactions of strong shock waves

and other discontinuities. Initial conditions are
ðqðx; 0Þ; uðx; 0Þ; pðx; 0ÞÞ ¼
ð1; 0; 103Þ if 0 6 x < 0.1;

ð1; 0; 10�2Þ if 0.1 6 x < 0.9;

ð1; 0; 102Þ if 0.9 6 x < 1.

8><
>: ð30Þ
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Fig. 4. Numerical results of the Mach 3 shock tube problem at t = 0.09. Solid lines represent the reference solutions and dashed lines

represent the results of the all speed primitive preconditioner.
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The boundary conditions at x = 0 and x = 1 are reflective solid wall conditions, i.e., we define auxiliary

states vn0; . . . ; v
n
�rþ1 for the left wall and vnMþ1; . . . ; v

n
Mþr for the right wall by
qn
�iþ1 ¼ qn

i ; un�iþ1 ¼ �uni ; pn�iþ1 ¼ pni ; for i ¼ 1; . . . ; r; ð31Þ
qn
Mþi ¼ qn

M�iþ1; unMþi ¼ �unM�iþ1; pnMþi ¼ pnM�iþ1; for i ¼ 1; . . . ; r. ð32Þ
To make a consistent comparison with Xiao�s [56] paper, we used the same number of grid cells 400 and
1600 cells to produce a numerical and a reference solution. We use the conservative explicit building block

with CFL (jujmaxDt < CFLDx) number 0.3 for this test problem. Fig. 6 shows that we achieved more accu-

rate results compared to [56] and observed no spurious oscillations which are noted in [56]. Here, we note

that there have been many reported higher resolution results for this problem, e.g., using ENO [35,36,44],

but these previous results were based on using purely explicit non-preconditioned methods. We have ob-

served with our new preconditioner that shock resolution is not adversely effected by the preconditioner

itself. For instance if one uses high order ENO/WENO schemes [35,36,44,20,30] as the explicit building

block, then we expect that our primitive preconditioning technique would produce similar shock resolution
as explicit ENO/WENO methods [35,36,44,20,30]. This can be seen by considering the implicit correction

equations in Section 3, i.e., consider the pressure correction equation,
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pnþ1;k � pexp;k

Dt
¼ �c2qr � dUnþ1;k; ð33Þ
where pexp is produced by an explicit building block. We observed that the difference term $ Æ dU gets very
small with an increasing number of iterations. This means that pn+1 gets closer to pexp (i.e., $ Æ dU ! 0 as

k›, then pn+1 ! pexp). This tells us that the implicit correction step spatially preserves the accuracy of the

explicit building block. In other words, if one provides a high order explicit building block, then our method

will spatially maintain the high order of accuracy of the given explicit building block.

4.1.7. Two symmetric rarefaction waves

Here, we present the two symmetric rarefaction waves test problem. The initial conditions, on the

0 6 x 6 1 interval, are
ðqðx; 0Þ; uðx; 0Þ; pðx; 0ÞÞ ¼
ð1;�2; 0.4Þ if x 6 0.5;

ð1; 2; 0.4Þ if x > 0.5.

�
ð34Þ
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Fig. 6. Numerical results of the two interacting blast waves problem at t = 0.038. Solid lines represent the reference solutions and

dashed lines represent the results of the all speed primitive preconditioner.
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Our results are comparable to Xiao�s [56] results. Fig. 7 shows that there are some computational inac-
curacies observed in the flow fields as in [56], when using the conservative explicit building block. For in-

stance, we have overestimation in the pressure profile near the expansion center, an unphysical pulse in the

internal energy field near the center of the low pressure region, and inaccurate velocity representation.

These inaccuracies are improved significantly (Fig. 8) simply by using the second version of our algorithm,

i.e., we precondition the non-conservative Euler equations (using non-conservative explicit building block,

Section 3.2) at the implicit correction step. We note that the improvements with using the non-conservative

explicit building block are due to the fact that there doesn�t exist any shock discontinuity in the flow.

4.1.8. Smooth flow test (Mach zero limit)

In this section, we show the results of the zero Mach limit flows which are dominated by acoustic waves.

We use the following smooth functions as the initial conditions,
uðx; 0Þ ¼ 0;

pðx; 0Þ ¼ p0 þ �p1ðxÞ;
ð35Þ
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Fig. 7. Numerical results of the two symmetric rarefaction waves problem at t = 0.15. Solid lines represent the reference solutions and
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where p0 = 106, � = 1.0, and
p1ðxÞ ¼ 60 cosð2pxÞ þ 100 sinð4pxÞ. ð36Þ

We initialize the density field by the following isentropic relation,
qðx; 0Þ ¼ pðx; 0Þ
A

� �1
c

; ð37Þ
where A is a constant which is determined by letting p0 = Aq0
c with q0 = 10�3.Here, we use periodic

boundary conditions on 0 6 x 6 1. The numerical results are produced by applying the second version

of our algorithm where we precondition the non-conservative explicit building block (Section 3.2).

Preconditioning the conservative explicit building block works fine as shown in Section 4.2.4, but the

computation would be less efficient due to the explicit CFL restriction. Preconditioning the non-conservative

explicit building block enables us to use larger time steps, i.e., CFL = 3 ((juj + c)maxDt < CFLDx). Figs. 13
and 14 together with Table 2 clearly demonstrate the second order convergence of our newly proposed

scheme.
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Fig. 8. Numerical results of the two symmetric rarefaction waves problem computed by the second version (preconditioning an explicit

building block based on the primitive Euler equations) of the algorithm at t = 0.15. Solid lines represent the reference solutions and
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4.2. Application of the second order primitive preconditioner technique to multi-phase flow problems

In this section, we present the application of the second order primitive preconditioner technique to

multi-phase flow problems. The major part of this section is dedicated to the underwater explosion

problem. In the first three subsections, the problem description of an underwater explosion, its numerical

procedure, and some computational results will be given. In the last subsection, the oscillating water
column problem in a 1-D tube and some numerical results will be presented.

4.2.1. Problem statement and mathematical description (an underwater explosion)

We are interested in studying non-linear bubble dynamics, which plays an important role in many areas

of contemporary science and technology such as: oil industry, in which bubbles are essential for lifting the

heavy oil to the surface; chemical reactors, in which bubbles are used to increase the contact surface be-

tween the gas–liquid phases; ship hydrodynamics, in which collapsing bubbles are the main cause of the

propeller damage and limiting factors for the speed of the vessels; some medical and many other techno-
logical applications (including our current subject underwater explosions) can also be added [5,7,15,62].
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Here, we pay special attention to underwater explosions. An underwater explosion generates a very

strong shock wave and a high pressure gas bubble. Therefore an underwater explosion can be modeled

as the growth and collapse of a gas bubble. For this problem, we make the following assumptions: bubble

expansions are assumed to be spherically symmetric, so variation only occurs in the radial direction. The

system is assumed to be adiabatic, i.e., we ignore the heat convection. We assume that surface tension
and viscous effects are negligible. We also assume that the gas contents of the bubble are spatially uniform

(but vary with time), i.e., we do not solve the gas-dynamics equations inside the bubble. Finally, we assume

that water is compressible and obeys the Tait equation of state (see Eq. (49) below), which is independent of

internal energy [49].

With the above assumptions, the governing equations become the inviscid compressible Euler equations

in spherical coordinates,
oq
ot

þ 1

r2
oðr2mÞ
or

¼ 0; ð38Þ

om
ot

þ 1

r2
oðr2umÞ

or
¼ � op

or
; ð39Þ
where q, u, m, and p represent density, velocity, momentum, and pressure of water, respectively.
We enforce a Dirichlet type moving boundary condition for water pressure, i.e., we specify water pres-

sure as the bubble pressure at the bubble wall.

The time dependent bubble pressure is determined by using the adiabatic form of the JWL (Jones–Wil-

kins–Lee) equation of state for explosive materials,
pbubbleðtÞ ¼ A e
�R1

V ðtÞ
V I

� �
þ B e

�R2
V ðtÞ
V I

� �
þ C

V ðtÞ
V I

� ��ðxþ1Þ

; ð40Þ
where VI is the volume of the bubble at the radius RI, and A, B, R1, R2, RI, and x are the standard

constants for TNT, and finally C is an arbitrary constant which is determined by letting V(t) = V0,

pbubble(t) = pbubble0 at t = 0.

The position of the bubble interface (the material surface) is captured by updating the following level set

equation,
o/
ot

þ u
o/
or

¼ 0; ð41Þ
where / is the level set function and u is the external velocity field (water velocity). The level set equation

(41) states that / is constant along particle paths. This means that if the zero level set of / is initialized as a

material surface (bubble interface) between water and gas, then it will always be a material surface at later

times [39,40]. We take / < 0 in the gas region and / > 0 in the water region (Fig. 15). Hence, we have
/ðr; tÞ
> 0 if r 2 water;

¼ 0 if r 2 C;

< 0 if r 2 gas;

8><
>: ð42Þ
where C represents the bubble interface, and it is defined as the zero level set of /,
C ¼ frj/ðr; tÞ ¼ 0g. ð43Þ
4.2.2. Numerical procedure

For an adiabatic underwater explosion, the governing fluid dynamics equations of water are the

continuity and momentum equations (38) and (39). Thus, the same second-order primitive preconditioner
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algorithm given in Section 3 applies here (except for the energy part, due to the Tait equation of state).

Here, we shall only concentrate on the details of the moving boundary conditions; i.e., the extension pro-

cedure (extrapolation) of the water field variables into the gas region at each time step, along with a short

description of the level set algorithm (Fig. 15).

We impose two different Dirichlet type of boundary conditions when solving the elliptic equation for the
new pressure field (6). At the left end of the computational domain (gas region), we specify the water pres-

sure as the bubble pressure which is calculated via the bubble volume. At the right end, we specify the

hydrostatic water pressure pinf as a pressure boundary condition.

We call one particular cell, in front of the bubble interface, the critical cell (Fig. 16). This critical cell

plays an important role during the computation, because the moving boundary condition at the left will

be determined by this cell. At each time step, we will have to find a new critical cell due to motion of

the bubble interface.

For i equals the critical cell (i.e., i = critical) we impose the following boundary conditions when discret-
izing (6),
pnþ1
critical�1 ¼

Dr
h
pnþ1
bubble þ

h� Dr
h

pnþ1
critical; ð44Þ
where h is the distance between the critical cell and the bubble interface.

For i equals the last cell (i.e., i = M) we have,
pnþ1
Mþ1 ¼

Dr
L
pinf þ

L� Dr
L

pnþ1
M ; ð45Þ
where pinf is the water pressure at some distance L.

We also apply the following boundary condition for the gradient of the pressure; i.e., for the $pn+1,k

term in (6),
pnþ1

r;critical�1
2

¼ pnþ1
critical � pnþ1

bubble

h
ð46Þ
and
pnþ1

r;Mþ1
2

¼ pinf � pnþ1
M

L
. ð47Þ
Now we shall discuss the extension procedure for the flow variables from water region into the gas re-

gion. We must use this extension since we do not solve the gas dynamics equation inside the bubble for this

particular problem, and we need the values of the flow variables in the gas region because we have to solve

the level set equation in whole domain including the gas and water. Also one has to solve (1) using values in

the ghost regions. Here, we remark that the discretization of the explicit step does not use the ghost fluid

treatment to define the ghost values. The extension procedure to define the ghost values is done through sets

of simple linear extrapolation of the flow variables from water into the gas, irrespective of the jump con-
dition that might exist at the moving boundary.

After finishing the extension procedure at each time step, we are ready to solve the level set equation in

the whole domain. The level set equation (41) is solved via the following second order differencing,
/nþ1;k
i � /nþ1;0

i

Dt
¼ �u

ðnþ1;k�1Þþðnþ1;0Þ
2

i

/
ðnþ1;k�1Þþðnþ1;0Þ

2

iþ1 � /
ðnþ1;k�1Þþðnþ1;0Þ

2

i�1

2Dr
. ð48Þ
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4.2.3. Numerical results of the underwater explosion

Here, we present the numerical results of the underwater explosion test problem, to show the perfor-

mance of our second order non-oscillatory all speed multi-phase flow algorithm developed in Sections 3

and 4. We recall that underwater explosions can be modeled as the growth and collapse of spherically sym-

metric gas bubbles, and considering the other assumptions we made in Section 4.2.1 we note that the
numerical results come from 1-D calculations of the adiabatic inviscid Euler equations together with the

level set equation in the radial direction.

The method is tested by using the following initial data:

The initial water density is taken to be 1.00037984 g/cm3.

The water pressure is calculated by the Tait equation of state [49],
p ¼ B½ðq=�qÞc � 1� þ A; ð49Þ

where B = 3.31E + 09 d/cm2, A = 1.0E + 06 d/cm2, �q ¼ 1.0 g/cm3, and c = 7.15.

The initial water velocity is taken to be 0.0, and initial water pressure is 1.0E + 07 d/cm2.
Finally, the initial bubble radius is taken to be 16 cm, and the initial bubble pressure is

P0 = 7.8039E + 10 d/cm2.

The conservative explicit building block (Section 3.1) is used here with CFL = 0.25 ((juj + c)Dt <
CFLDx). In Figs. 17 and 18, we demonstrate the second order accuracy of the proposed scheme away from

the discontinuities. The code is run for four different grid settings, 250, 500, 1000, and 2000. The enlarged

part of the pressure profile, Fig. 18, clearly indicates convergence of our method at discontinuities. Fig. 19

shows the bubble radius as a function of time during the growth and collapse of the explosion bubble. It can

be seen that our solution is in very good agreement with the benchmark data [49].
We note that this problem is a difficult problem to compute due to the high impedance mismatch at the

explosive-water boundary. Nevertheless, we capture this discontinuity smoothly and with second order

accuracy. This is because we avoid complicated ghost fluid procedures [12,13,3,4,32,44] which are necessary

for explicit multi-material methods. First order explicit ghost fluid treatments assume a piecewise constant

pressure profile which is an incorrect assumption for ‘‘stiff fluids’’. Second order explicit ghost fluid treat-

ments are unstable unless complicated regularization procedures are used to avoid ‘‘small cell’’ CFL con-

straints. In our method, the matching of pressure on either side of the material boundary is handled

simultaneously during the implicit preconditioning step thus avoiding ‘‘small cell’’ CFL constraints. The
explicit building block step in our method is written independent of material boundaries involved.

4.2.4. Oscillating water column (a low Mach multi-phase flow test)

We consider a closed one dimensional tube with impermeable boundaries at the left and right ends

(Fig. 9). With the given initial velocity the water column starts moving from left to right compressing

the air at the right and expanding the air at the left. Subsequently, a pressure difference is built up across

the water column resulting that the column of water decelerates to the right, makes a stop, and then accel-

erates to the left. This time a reverse pressure difference is built up across the water column redirecting the
flow from left to right again. As a result of this continuous process, the water column starts to oscillate. The

governing equations and the numerical procedure are the same as in Section 4.2.1 and 4.2.2 except all for-

mulations have to be written in cartesian coordinates. The following initial data are used as in [26],
   waterair airU

1–1 0–xfs fsx x

Fig. 9. A closed tube in which a column of water moves from left to right with constant speed U.
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and right figure is generated by using the primitive explicit building block. CFL = 0.8 on left and CFL = 3.0 on right.
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p þ Bpref
ð1þ BÞpref

¼ q
qref

� �c

; ð50Þ
where the same equation of state (50) can be used for both water and air with pref = qref = 1, cw = 7, ca = 1.4,

Bw = 3000, Ba = 0, pw0 = pa0 = 1, u = 1, and xfs = 0.1. To be consistent with Koren et al. [26], we plot the

time evolution of the pressure coefficients,
P ðx ¼ �1; tÞ ¼ pðx ¼ �1; tÞ � pað0Þ
pað0Þ

; P ðx ¼ 1; tÞ ¼ pðx ¼ 1; tÞ � pað0Þ
pað0Þ

; ð51Þ
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Fig. 13. Numerical results of the smooth flow test with CFL = 3 at zero Mach limit.
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Fig. 14. Numerical results of the smooth flow test with CFL = 3 at zero Mach limit.
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Fig. 15. Bubble interface (the material surface) represented by the level set function.

Table 2

Error analysis for the zero Mach test problem based on three levels of grid refinement

Error in acoustic pressure from 200 to 400 mesh Error in acoustic pressure from 400 to 800 mesh Order of accuracy

l1 norm 48.70 8.93 2.45

l1 norm 27.94 5.12 2.45
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and the time evolution of the relative mass error,
MðtÞ � maðtÞ � mað0Þ
mað0Þ

; ð52Þ
where ma(t) is the total mass of air in the tube at time t. Figs. 10 and 11 are produced by using both con-

servative and non-conservative explicit building blocks. We used CFL = 0.8 ((juj + c)maxDt < CFLDx) for
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Fig. 16. A moving boundary condition representation for pressure.
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(underwater explosion test).
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conservative explicit building block, and CFL = 3 ((juj + c)maxDt < CFLDx) for non-conservative explicit

building block. As we can see, results from both building blocks are reasonably comparable, yet we notice

that non-conservative explicit building block is more efficient. With this problem, we demonstrate the abil-

ity of our method for computing low Mach (weakly compressible Fig. 12) multi-phase flows. We note that

our method preserves mass three orders of magnitude better than Koren et al. [26]. We also note that the

amplitude of pressure profile in Fig. 10 is different from Koren et al. [26], because we are assuming constant

pressure in gas whereas Koren et al. [26] use two-fluid model.
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5. Conclusions

A second order primitive preconditioner for solving all speed multiphase flows has been presented. This

new technique enables us to compute both compressible and incompressible flows with Mach uniform accu-

racy and efficiency, i.e., we solved problems from the zero Mach number to very high Mach numbers with
the same accuracy and efficiency. We showed through various test problems that our technique can

efficiently handle strong or weak shocks. Throughout all the test cases we obtained highly resolved shock

discontinuities together with calculating correct shock speeds. In the smooth flow test and the low Mach

flow test (oscillating water column) cases, we introduced an alternative application of our preconditioner

in which we preconditioned an explicit building block based on the non-conservative (primitive) form of

the Euler equations. This alternative application allows us to use large time steps with high order of accu-

racy. The present method performs very well when solving multi-material flow problems. The underwater

explosion test case shows that we have eliminated the spurious pressure oscillations at the material surfaces.
The multi-phase flow test also shows that our method can handle high impedance interface flows very effi-

ciently and accurately.

The numerical results clearly indicate that our method is more efficient and accurate than current state of

the art techniques for all speed multi/single phase flows. Some improvements could be made by adding high

order ENO/WENO schemes [35,36,44,20,30,29] as the explicit building block. An important benefit of our

preconditioner is that one can use any of his/her favorite explicit schemes as an explicit building block, then

precondition it by our primitive preconditioner. Our method will be combined with the automating dy-

namic adaptive mesh refinement (AMR) technique including subcycling procedure, wherein very large time
steps will be taken on coarser levels without degrading the accuracy on the finest level. The new all speed

multi-phase multi dimensional AMR technique will use a strategy that a non-conservative explicit building

block will be applied on coarser levels where shock resolution is not needed, and a conservative explicit

building block will be applied on the finest level to be able to calculate highly resolved shock discontinuities.
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